FCKW-, H-FCKW- und HFKW in Kälte- und Klimaanlagen

Vorausbestimmung von Emissionen für den Zeitraum von 2002 bis 2015*

L.J.M. Kuijpers, Eindhoven (NL), D. Clodic und L. Palandre, Paris (F); bearbeitet von U. Adolph, Leipzig (D)

Unter Berücksichtigung der bestehenden IPCC-Richtlinien haben viele Länder versucht, ihren Bestand an Treibhausgasen und deren Emissionen zu bestimmen. Seit den frühen 90ern ist von den Experten viel für die Bestimmung von CO₂-, N₂0- und CH₄-Emissionen geleistet worden. In der jüngeren Vergangenheit haben die drei fluorierten "Kyoto"-Gase, d. h. SF₆, PFKWs und HFKWs weniger Aufmerksamkeit bei der Bestimmung des Bestandes und der Emissionen erfahren. Besonders hinsichtlich der HFKW ist dies auch durch ihre Einführung als Ersatz für FCKW und H-FCKW verursacht.

Zunächst werden der Bestand und die Emissionen von FCKW (R11, R12 u.a.) und H-FCKW für das Jahr 2002 festgestellt. Außerdem sind die jährlichen Umsätze bzw. Verbräuche dieser Substanzen bestimmt worden. Diese Marktdaten wurden mit von AFEAS herausgegebenen Daten verglichen, um eine hohe Genauigkeit der Emissionsvorhersagen zu erreichen. Auf der Grundlage von verschiedenen ökonomischen Szenarien und der unterschiedlichen genutzten Kältemittel sind die Märkte von FCKW, H-FCKW und HFKW im Kälte- und Klimabereich für die Periode 2002 bis 2015 ermittelt worden.

Die Vorausbestimmung des Kältemittelmarktes, des Bestandes und der Emissionen sind für die Periode bis 2015 für die verschiedenen Bereiche der Kälte- und Klimatechnik und für die verschiedenen Regionen in der Welt erfolgt.

Berechnungsmethode für die Ermittlung der Kältemittelemissionen und ihre globale Verifizierung

Die IPCC¹-Richtlinie [4] benutzt eine sog. TIER-2-Methode für die Berechnung der Kältemittelemissionen² aus Kälte- und Klimaanlagen

- während des Herstellungsprozesses,
- während der Nutzungsphase und
- am Ende der Lebenszeit der Anlage. Dieser Ansatz erfordert, so genannte Aktivitätsdaten für alle Anwendungsbereiche zu sammeln, d.h. für alle Anlagen, die jährlich verkauft und für die Jahre, in denen diese betrieben werden. Je Land und auch global müssen große Datenbasen geschaffen werden, die auf den verfügbaren Statistiken beruhen.

Palandre [5] stellt die Gleichungen für die Bestimmung der Werte für die verschiedenen Typen von Kältemitteln, die in allen Arten von Kälteanlagen enthalten sind, ausführlich dar, ebenso für die Berechnung der Emissionsmengen. Diese Gleichungen stimmen mit den IPCC-Richtlinien überein[4]. Diese Methode wird nun schon seit sieben Jahren für die Bestimmung des Kältemittelbestandes und der Emissionen verwendet, so z.B. auch für die Emissionsbestimmung von der französischen Regierung [8], [9]. Sie wird auch für die Bestimmung des globalen Bestandes benutzt. Die Methode wurde in einem Vortrag beschrieben, der auf der DKV-Tagung 2001 gehalten wurde [2].

Für jeden Anwendungsbereich muss das geeignete Kältemittel ausgewählt werden: Das hängt von nationalen und internationalen Vorschriften ab, ebenso wie von den Regelungen des Montreal Proto-

Dr. Lambert Kuijpers, Co-chair UNEP-TEAP (Refrigeration, Air Conditioning and Heat Pumps Technical Option Commitee), Eindhoven (NL)

kolls, dem Einfluss des Umweltschutzes und den Festlegungen der OEMs. Für jede Anwendung muss die jährliche Leckrate bestimmt werden, die stark länderabhängig ist, abhängig vom Serviceniveau und von der durchschnittlichen Lebensdauer der Anlagen. Die Verbesserung der Datenqualität ist ein kontinuierlicher Prozess und erfordert systematische Rückkopplungen von der Praxis.

^{*} Als Vortrag anlässlich der Deutschen Kälte-Klima-Tagung des DKV durch Dr. Lambert Kuijpers am 18.11.2004 in Bremen gehalten.

Intergovernmental Panel on Climate Change (Zwischenstaatliche Ebene zum Klimawandel)

² Gesamtemission = Herstellungsemissionen + Betriebsemissionen + Entsorgungsemissionen

Kältemittelmarkt

Eine der entscheidenden Stufen in der Berechnungsprozedur ist die Ermittlung des Marktaufkommens, d.h. des Bedarfs an den verschiedenen Kältemitteln durch Addition der jährlichen Mengen, die in alle Typen von neuen Anlagen gefüllt werden, und der entsprechenden Mengen für alle Serviceoperationen, s. Tabellen 1 und 2.

Wenn diese Daten ermittelt sind, werden sie mit den Marktdaten verglichen, wie sie von den Kältemittel-Herstellern und

Händlern angegeben werden. In einigen Ländern werden die verkauften Kältemittelmengen registriert und die Kältemittelhändler publizieren ihre jährlichen Umsätze an FCKW-, H-FCKW- und verschiedenen HFKW-Kältemitteln.

Kältemittelmarkt nach Sorten

Kältemitte	Kältemittelmarkt 2002		onnen	ODP-Toi	nnen
	R11	5 884		5 884	
FCKW	R12	131 652	149 260	107 954	118 537
	R115	11 724		4 699	
	R22	345 815		13 833	
H-FCKW	R 123	7 695	356 790	108	14 038
	R124	3 280		98	
	R 125	23 473		-	
	R 134a	133 322		-	-
HFKW	R 143a	28 492	189 614	-	
	R 152a	1 254		-	
	R32	3 065		-	
	R717	22 371		-	
Andere	R744	-	23 075	-	-
	R 600a	703		-	

Tabelle 1 Kältemittelmarkt im Jahre 2002 (Anmerkung: Die wissenschaftlichen ODP-Werte sind [10] entnommen)

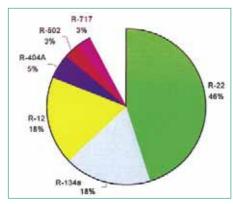


Bild 1 Kältemittelanteile im Jahre 2002

Im Jahre 2002 war R22 das am meisten verbreitete Kältemittel, es macht fast die Hälfte der weltweit verbrauchten Kältemittel aus. Ein großer Bedarf besteht in Entwicklungsländern wie China. Der globale H-FCKW-Bedarf hat sich jetzt bei etwa 200000 t stabilisiert und der FCKW-Bedarf stagniert bei mehr als 100000 t.

Kältemittelmarkt nach Anwendungsgebieten

	Haushalt	Gewerbe	Transport	Industrie	Stationäres Klima	Mobiles Klima
FCKW	6 703	68 166	683	6 706	11 193	55 808
H-FCKW	-	161 040	915	26 503	165 499	2 833
HFKW	7 972	48 183	3 936	5 996	26 858	96 670
Andere	703	•	1	22 083	289	1
Gesamt	15 378	277 389	<i>5 535</i>	61 287	203 839	155 311
ODP-t	5 673	56 666	590	5 478	16 867	52 971

Tabelle 2 Kältemittelmarkt im Jahre 2002 nach Anwendungsgebieten (in t)

Die Gewerbekälte ist das bedeutendste Anwendungsgebiet des gesamten Kältemittelbedarfs, d.h. des Bedarfs an FCKW, H-FCKW und HFKW. Nur für die H-FCKW betrachtet sind die stationären Klimaanlagen ebenso wie die Gewerbekälte die bestimmenden Anwendungen.

Der Hauptanteil der HFKW wird in den mobilen Klimaanlagen verwendet, was die Hälfte des globalen HFKW-Marktes reprä-

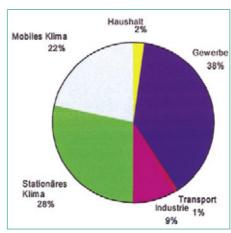


Bild 2 Anteile der Anwendungsgebiete (in %)

sentiert (ungefähr 96000 t im Verhältnis zum Gesamtverbrauch von 190000 t). Dies unterstreicht die Bedeutung der mobilen Klimatisierung für den globalen HFKW-Markt.

Kältemittelbestand

Kältemittelbestand nach Kältemittelsorte

Kältemittelb	Kältemittelbestand 2002		tonnen	ODP-1	Tonnen	
	R11	45 444		45 444		
FCKW	R12	486 533	593 156	398 957	458 065	
	R 502	60 999		13 664		
	R22	1 397 057		55 802		
H-FCKW	CKW R 408A 32 727 1 500 161	622	57.040			
n-runv	R401A	26 630	1 500 161	826	57 942	
	R123 43 746	612				
	R 134a	380 249		-		
	R 404A	78 712		-	-	
HFKW	R407C	12 003	488 515	-		
	R410A	7 151		-		
	R507	10 402		-		
	R717	106 560		-		
Andere	R744	-	109 317	-	-	
	R 600a	2 757		-		

Tabelle 3 Kältemittelbestand im Jahre 2002

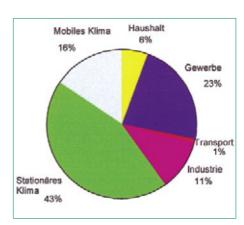


Bild 3 Kältemittelanteile im Bestand 2002

Für 2002 wurde der globale Bestand an Kältemitteln zu rund 2 700 000 t ermittelt. Was den Anteil der verschiedenen Kältemittel am globalen Bestand ausmacht, ist in Tabelle 3 gezeigt.:

- 1,5 Mill. t H-FCKW
- 490 000 t HFKW
- $\bullet~590~000~t~FCKW~und$
- 110 000 t nichtfluorierte Kältemittel

Kältemittelbestand nach Anwendungsgebieten

	Haushalt	Gewerbe	Transport	Industrie	Stationäres Klima	Mobiles Klima
FCKW	107 039	200 907	3 274	48 752	83 891	149 293
H-FCKW	-	321 434	3 157	127 517	1 027 572	20 481
HFKW	49 873	83 470	9 513	16 226	80 906	248 528
Andere	2 757	-	1	105 306	1 254	-
Gesamt	159 669	605 811	15 944	297 621	1 193 624	418 301
ODP-t	89 501	154 624	1 785	28 125	118 727	137 958

Tabelle 4 Kältemittelbestand nach Anwendungsgebieten im Jahre 2002 (in t)

Nahezu die Hälfte des Kältemittelbestandes findet sich in stationären Klimaanlagen (s. Bild 4). Der größte Bestand an FCKW befindet sich in der Gewerbekälte, wo auch der größte Markt ist.

Der größte Bestand von H-FCKW entfällt auf die stationäre Klimatechnik, gefolgt von der Gewerbekälte (s. Tabelle 4, ca. 1/3 der stationären Klimatechnik).

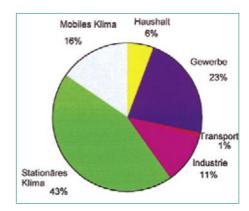


Bild 4 Aufteilung nach Anwendungsgebieten 2002

Der größte Teil des HFKW-Bestandes befindet sich in mobilen Klimaanlagen (etwas über 50% des Gesamtbestandes).

Kältemittelemissionen

Emissionen nach Kältemittelsorte

Kältemittelem	Kältemittelemissionen 2002		lassetonnen
	R11	7 106	
FCKW	R 12	126 644	144 225
	R 115	10 475	
	R22	229 303	
H-FCKW	R 123	4 151	236 318
	R 124	2 864	
	R 125	9 872	
	R 134a	74 343	
HFKW	R 143a	14 765	100 644
	R 152a	1 095	
	R32	568	
Andere	R717	17 913	
	R744	-	17948
	R 600a	35	

Tabelle 5 Kältemittelemissionen im Jahre 2002

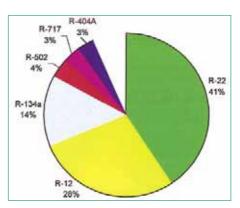


Bild 5 Kältemittelanteile an den Gesamtemissionen im Jahre 2002

Die Kältemittelemissionen im Jahre 2002 betragen ca. 500 000 t, wenn man die Gesamtheit aller Kältemittel einbezieht. Die Emissionen von H-FCKW (wobei R22 den größten Teil ausmacht, andere H-FCKW-Emissionen sind gering) sind fast ebenso hoch wie die FCKW- und HFKW-Emissionen zusammen.

Kältemittelemissionen nach Anwendungsgebiet

	Haushalt	Gewerbe	Transport	Industrie	Stationäres Klima	Mobiles Klima
FCKW	8 434	54 865	1 183	6 859	13 069	59 815
H-FCKW	1	107 119	1 553	23 533	95 932	8 181
HFKW	481	22 979	3 265	1 884	6 064	65 970
Andere	35	ı	ı	17 704	209	-
Gesamt	8 950	184 963	6 002	49 981	115 274	133 965

Tabelle 6 Kältemittelemissionen nach Anwendungsgebieten im Jahre 2002 (in t)

Wenn man die verschiedenen Kälteund Klimabereiche betrachtet, ist deutlich zu sehen, dass die Gewerbekälte weltweit der Bereich mit den größten Emissionen darstellt. Wenn man die HFKW betrachtet, liefert die mobile Klimatisierung den größten Beitrag zu den Gesamtemissionen 2002.

Stationäre Klimaanlagen sind durch geringere Emissionsraten gekennzeichnet.

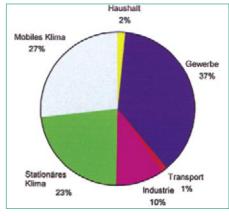


Bild 6 Anwendungsgebietsanteile im Jahre 2002

Aus diesem Grunde beträgt ihr Anteil nur 1/4 an den weltweiten Gesamtemissionen.

Bestand und Emissionen in CO₂-Äquivalenten

Es kann zwar interessant sein, den Bestand und die Emissionen in tauszudrücken, jedoch für eine Studie zum globalen Treibhauseffekt (GWP-100 Jahre Bezugswert) ist der äquivalente Wert in CO₂-Emissionen, bezogen auf diese Tonnage, von Bedeutung. Dies ist das Maß für den Einfluss auf die globale Erwärmung. Die hier benutzten GWP-Werte wurden im IPCC Second Assessment Report[4] publiziert.

Der Kältemittelbestand im Jahre 2002 nach Anwendungsgebieten, umgerechnet in kt CO_2 -Äquivalent

	Haushalt	Gewerbe	Transport	Industrie	Stationäres Klima	Mobiles Klima
FCKW	867 018	1 550 455	20 370	312 921	488 702	1 209 270
H-FCKW	1	504 392	6 063	191 275	1 479 676	30 722
HFKW	64 384	248 679	25 334	43 037	110 920	323 131
Andere	-	-	-	-		-
Gesamt	931 402	2 303 526	51 767	504 239	2 079 298	1 563 123

Tabelle 7 Der Kältemittelbestand im Jahre 2002 nach Anwendungsgebieten, (umgerechnet in kt CO_2 -Äquivalente)

Von den gesamten 7,4 Gt CO₂-Äquivalent des gesamten Kältemittelbestandes sind 4,45 Gt den FCKW zuzuordnen, d. h. 60% des in der näheren Zukunft wirkenden GWP stammt noch von den FCKW-Emissionen in die Atmosphäre. Dabei haben die beiden Anwendungsbereiche der Gewer-

bekälte und der stationären Klimatisierung einen Anteil von 4,38 Gt am gesamten Kältemittelbestand. Die Schlussfolgerung daraus ist, dass 60% der schädlichen Emissionen in der näheren Zukunft aus diesen beiden Bereichen stammen werden. 20% des Gesamtemissionspotenzials (noch Be-

stand) kann von der mobilen Klimatisierung kommen, mit 14% von diesen 20% als noch FCKW-Bestand weltweit 2002.

Diese Darstellung unterstellt aber keinesfalls, dass der Bestand vollständig emittiert wird und Rückgewinnung und Recycling oder Entsorgung nicht stattfinden!

Kältemittelemissionen 2002 nach Sorte

Kältemittelemissionen 2002		CO₂-Äqui	valente kt
	R11	27 005	
FCKW	R12	1 025 816	1 150 237
	R115	97 417	
	R 22	343 955	
H-FCKW	R 123	374	345 675
	R 124	1346	
	R 125	27 643	
HFKW	R 134a	96 646	
	R 143a	56 108	180 920
	R 152a	153	
	R32	369	

R-143a R-125 R-11 2% 2% 4% R-134a 5% R-22 22%

Bild 7 Kältemittelanteile an den Emissionen 2002, ausgedrückt in kt CO₂-Äquivalent

Tabelle 8 Kältemittelemissionen 2002, ausgedrückt in kt CO₂-Äquivalente

Es mag unerwartet erscheinen, dass 2002 das FCKW R12 einen Anteil von 61% am Gesamtwert des GWP aus allen Kältemitteln aufweist. Die massebezogenen Emissionen des R12 betragen nur 25% der Ge-

samtemissionen. Die 61% resultieren aus dem vergleichsweise hohen GWP-Äquivalenzwert dieses Kältemittels.

Dagegen hat R22 mit seinem Masseanteil von 45% an den Gesamtemissionen nur 22% Anteil am GWP-Gesamtwert.

R134a repräsentiert 15% der massebezogenen Emissionen mit einem GWP-Anteil von nur 5%.

Kältemittelemissionen 2002 nach Anwendungsgebieten

	Haushalt	Gewerbe	Transport	Industrie	Stationäres Klima	Mobiles Klima
FCKW	68 315	452 870	10 318	57 915	76 319	484 502
H-FCKW	-	157 729	2 330	35 300	138 045	12 271
HFKW	625	72 749	8 379	5 006	8 390	85 770
Andere	1	-	-	-	-	-
Gesamt	68 941	683 347	21 027	98 220	222 754	582 543

Tabelle 9 Kältemittelemissionen 2002 nach Anwendungsgebieten in kt CO_2 -Äquivalente

Im Jahre 2002 sind die FCKW in der gewerblichen Kühlung und mobilen Klimatisierung in den Entwicklungsländern noch mit einem großen Anteil vertreten (Artikel 5(1) des Montreal Protokolls). Der höhere GWP-Wert des R 12 (sieben- bis achtfach von R 134a, das einen GWP-Wert von 1300

besitzt) macht die andauernde Bedeutung dieses Bereiches deutlich.

Wenn nur HFKW-Kältemittelemissionen betrachtet werden, liegen die Gewerbekälte und die mobile Klimatisierung beim nahezu gleichen Wert, obwohl die mobile Klimati-

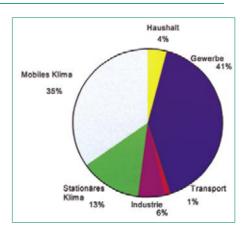


Bild 8 Anteile der Anwendungsbereiche 2002 am gesamten CO₂-Äquivalent

sierung mengenmäßig dreifach mehr zu den Emissionen beiträgt (Tabelle 6).

Wird fortgesetzt.Literaturhinweise finden Sie in der
Ausgabe 03/05

Ozonabbauende Substanzen auch dominierend beim direkten Treibhausbeitrag durch Emissionen fluorierter Kältemittel

Das Kyoto-Protokoll reglementiert weltweit Emissionen bestimmter Treibhausgase und gibt Reduktionsziele für die Unterzeichnerstaaten vor. Dabei fällt auf, dass zu den Gasen, die Emissions-Reduktionsverpflichtungen gemäß Kyoto unterliegen, zwar die HFKW, die PFKW (perfluorierte Fluorkohlenwasserstoffe) und Schwefelhexafluorid gehören, nicht jedoch FCKW und H-FCKW, obwohl diese Halogenkohlenwasserstoffe neben ihrem Ozon-Abbaupotenzial noch ein teilweise erheblich höheres Treibhauspotenzial als ihre Nachfolger, die HFKW, aufweisen. Die Erklärung dafür findet man in der Klimarahmenvereinbarung von 1992, die die Festlegung traf, in ein künftiges Vertragswerk zur verbindlichen Festlegung konkreter Reduktionsverpflichtungen (das 1997 verabschiedete Kyoto-Protokoll) alle Treibhausgase aufzunehmen mit Ausnahme solcher, die bereits durch andere Protokolle geregelt werden. Darunter fallen die vom MontrealProtokoll reglementierten ozonabbauenden Substanzen FCKW und H-FCKW!

Damit war bisher zu unterscheiden zwischen einem politischen Ansatz, der den Treibhauseffekt von FCKW und H-FCKW schlichtweg ausblendete; und der Realität in der Atmosphäre.

Zur Ermittlung der Treibhausgas-Emissionsdaten wurden in den vergangenen Jahren umfangreiche Untersuchungen durchgeführt. Dabei wurde in bestimmten Anwendungsbereichen der fluorierten Treibhausgase, in denen bisher verwendete ozonabbauende Substanzen ersetzt werden, ein umfassendes Bild zur Bestands- und Emissionsentwicklung erarbeitet. Der hier vorliegende Beitrag beschreibt das Ergebnis dieser Untersuchungen für den Bereich Kälteund Klimatechnik.

Die besondere Bedeutung dieser Arbeit ist darin zu sehen, dass erstmals seit Verabschiedung des Kyoto-Protokolls die Veränderung des gesamten direkten Treibhausbeitrags bei der Anwendung halogenierter Kältemittel in der Umstellungsphase von FCKW und H-FCKW auf HFKW und nicht halogenierte Kältemittel zwischen 2002 und 2015 in einem globalen Ansatz dargestellt und damit auch der Treibhausbeitrag der ozonabbauenden Kältemittel einbezogen wird.

Der erste Teil dieses Beitrags endet mit der Darstellung des weltweiten direkten Treibhausbeitrags der Kälte- und Klimatechnik unter den Rahmenbedingungen des Jahres 2002. Dabei wird deutlich (Tabelle 9), dass im Hinblick auf eine effiziente Reduzierung des direkten Treibhausgas-Beitrags aus dem Einsatzsektor Kälte- und Klimatechnik die Konzentration auf FCKW- und H-FCKW-Kältemittel in vorhandenen Anlagen in Form emissionsreduzierender Maßnahmen sehr viel wirkungsvoller wäre, da diese beiden Kältemittelgruppen zusammen in 2002 fast 90% (in CO₂-Äquivalenten) des direkten Beitrags aus diesem Bereich darstellten.

Der Leser darf gespannt sein auf den zweiten Teil, in dem die Prognosen für 2015 zu finden sein werden! $Redaktion\ KK$

DIE KÄLTE & Klimatechnik 2/2005 21